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As analytical solution of the problem of the propagation of Rayleigh waves in cubic crystals in their elastic symmetry planes and 
in the directions of the crystallographic axes is constructed using a three-dimensional complex formalism. The Rayleigh function 
is analysed taking into account the multiplicity of the roots of the characteristic polynomials, and the conditions under which it 
approaches zero for two values of the phase velocity are investigated. The relations between the elasticity constants of the cubic 
crystals for which a Rayleigh wave cannot propagate in the direction of the crystallographic axes are obtained. © 2000 Elsevier 
Science Ltd. All rights reserved. 

The propagation of Rayleigh waves on the surface of anisotropic crystals was investigated for the first 
time by Stoneley [1] using Rayleigh's method [2]. The case of surface waves propagating in the elastic 
symmetry planes in the direction of  the crystallographic axes of cubic crystals and along the diagonals 
to them was considered. When determining the roots of the characteristic polynomials, it was assumed, 
as in the isotropie case [2], that they are pure imaginary. It was shown [3-5] that the roots of the 
polynomials for cubic crystals, generally speaking, are complex. Later, Rayleigh's analytical methods 
were extended to hexagonal crystals [6] and orthohombic crystals [7]. 

Other versions of the analytical approach to investigating Rayleigh waves in the elastic symmetry planes 
and highly symmetric directions of cubic crystals and also close to these directions are known [8-11]. 
An asymptotic method has been developed which reduces the Rayleigh-wave problem in a medium 
with weak anisotropy to a Rayleigh-wave problem in an elastic isotropic half-space [12-13]. 

Of the various numerical solutions we note investigations on determining the velocities of Rayteigh 
waves propagating in different planes of cubic and hexagonal crystals [14-16]. 

The physical properties and characteristics of the different types of surface acoustic waves have been 
systematically described in [17], where they are also classified. Note that beginning with Stoneley's paper 
[1], in all subsequent publications [3-17] the case when there are multiple roots, corresponding to one- 
dimensional spectral spaces, among the roots of the characteristic polynomial were not considered. This 
has a led to a loss of one important class of solutions. 

In this paper  we use a classical approach, which goes back to Rayleigh, in which any possible change 
in the structure of the solution corresponding to multiple roots, is ignored. 

1. F U N D A M E N T A L  E Q U A T I O N S  

The equations of motion for an anisotropic medium have the form 

div C.-Vn = pii (1.1) 

where C is the four-valent elasticity tensor, p is the density of the medium, and u is the displacement 
field. The solution for the partial components of the Rayleigh wave can be expanded in the form 

u(x) = mei~'X e i (~'x- t°O (1.2) 

where m is the amplitude vector, ~' is the (complex) root of the characteristic polynomial of Christofel's 
equation, v is the vector of the unit outward normal to the plane in which the surface wave propagates, 
n is the unit vector which defines the direction of propagation of the wave, x is the wave number and 
co is the frequency of  the wave. 

Substituting (1.2) into (1.1) we obtain 

T .  m = 0 (1.3) 
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where 

T =T2A +TB +D 

A = v . C . v ,  B = v . C . n + n . C . v ,  D=n.C.n- Ipc2 ,  c=m/~ (1.4) 

and I is identity matrix. 
In order for (1.3) to be satisfied when m ~ 0, it is necessary and sufficient that 

det T = 0 (1.5) 

Condition (1.5) reduces to a sixth-order polynomial equation in ),. Substituting the roots with negative 
imaginary part, which we will denote by ~ ,  into (1.3), we obtain the eigenvectors m (k) corresponding 
to these roots. The displacement vector will be sought in the general case in the form of a linear 
combination of three eigenvectors (or three waves) 

3 
u = Y. Xkm(k)F(~k), F(~ k) = exp(-i~kx • v + i~(x. n - ct)) (1.6) 

k=l 

where Xk are arbitrary (complex) coefficients. 

Note. In this paper we investigate the case when Eq. (1.5) has three pairs of complex-conjugate roots, to which 
correspond three eigenvectors ink. Other cases have been considered previously.t 

The boundary conditions corresponding to a stress-free surface 

v -  C . - V u  = 0 (1 .7)  

must be satisfied on the surface of the medium. 
Substituting (1.6) into (1.7) we obtain a matrix equation in the unknown coefficients Xg 

H ' X = 0 ,  X = ( X I , X 2 ,  X3) (1.8) 

where H is a 3 x 3 complex-significant matrix. The necessary and sufficient condition for non-trivial 
solutions of Eq. (1.8) to exist is as follows: 

det H = 0 (1.9) 

from which we can obtain the Rayleigh-wave velocity cR. 
It is assumed that the elasticity tensor C is positive definite 

VA • sym(R 3 ® R3), A ,  0 

(A- .C. .A)-  = • AijcijratAnm > 0 (1.10) 
i,j,m,n 

In addition a supplementary positive definite condition is imposed on the elasticity tensor. In order to 
introduce this condition, consider the convolution 

(C**A) in = X cijmnAjm (1.11) 
j,m 

where A is a symmetric positive definite second-rank tensor. In terms of convolution (1.11) the 
supplementary positive definite condition has the form 

VA • sym(R 3 ® R3), A ~ 0 

( A * * C * * A ) -  = • AincijmnAjm >0 (1.12) 
i,n,j,m 

An analysis of conditions (1.10) and (1.12) shows that in the general case of anisotropy, one of these 
does not follow from the other. 

IKAPTSOV, A. V. and KUZNETSOV, S. V., Rayleigh waves in anisotropic media. Basic theory. Preprint No. 621, Institute 
for Problems in Mechanics of the Russian Academy of Sciences, Moscow, 1998. 
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All actual anisotropic materials obviously satisfy condition (1.12). An analysis of different systems 
of crystals [18] does not reveal any breakdown of the supplementary positive definite condition. 

2. STONELEY'S  SOLUTION 

For cubic crystals we have three independent moduli of elasticity 

C l l l l  = C2222 = C3333 = C l l ,  Cl122 = C1133 = C2233 = C12 

C1212 = C1313 = C232S = C44 

Before continuing with the further analysis we will write the condition for the elasticity tensor C to 
be positive definite 

Cll >0, C44>0, -Cn/2<C12<CH (2.1) 

The supplementary positive definite condition has the form 

Cii---C44>0, C12+C44>0, CII +2C44>0 

Equation (1.5) for a cubic crystal corresponds to the two equations 

C44+C44~[2-pc2=0,  a~4 +/7y2 + r = 0 (2.2) 

The parameters a, b and r are related to the elasticity constants and the phase velocity by the equations 

a = C11C44, b = C~11---C22--2C12C44---(Cll + C44)Pc 2 

r = Ct2C,4-(CH + C44)pc 2 + p2c4 (2.3) 

One pair of roots of the equation is found from the first equation of (2.2); in order that it should be 
complex, it is necessary and sufficient that 

c < ~ - W P  - cs (2.4) 

where c3 is the velocity of the slow transverse wave. The other roots are found from the second equation 
of (2.2). 

Substituting the roots with negative imaginary parts (~2 from the first equation of (2.2) and ~1 and 
~3 from the second) into (1.3), we obtain the eigenvectors corresponding to these roots. Following the 
procedure described above (formulae (1.6)-(1.9)), the details of which can be found in Stoneley's paper 
[1] (see also [6]), we obtain the condition for the determinant of boundary conditions (2.10) to vanish 
reduces to the following 

x2 = 0 (2.5) 

c , . ( ~ , - , ~ s )  G(~1 ,~2)=0  ' a = q l _ p c  2 
detH = (Cll + C44)2~I~3 

O(l~,,l~s) = {-C,2Ct,C~] +otC,,C~(~ + ~ ) -  (2.6) 

- '~l.¢s(Cl2 + C~)(C3: - aCj O -  a[Cl2(C12 + C44)- C~ j a i l  

It follows from (2.5) that there is no partial component in the surface wave corresponding to a wave 
polarized perpendicular to the sagittal plane (the plane formed by the vectors v and n). If the roots ~1, 
~3 are different (as was assumed in [1]), equating the determinant of the boundary conditions to zero 
corresponds to the equation 

G(~i, ~2) = 0 (2.7) 

Since for a biquadratic equation the two pairs of complex-conjugate roots differ from one another 
in sign, we have 

2 2 2 
~t~s =r/a, ~ +~.s =-b/a (2.8) 
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and from conditions (2.3), (2.7) and (2.8) we obtain the condition [1] from which we can find the 
Rayleigh-wave velocity CR 

2 pc~ 
L kc,,; ] k c,,, / c,, 

(2.9) 

We can obtain the expression (6) 

x = x 3  = _  ~ ( c , : , ,  ~ - c , ,  +po~) 
Xl {1(Cl2{3 2 - G !  +pc~) 

(2.10) 

from which it follows that if ~1 "-') ~3 thenx ---> -1. It can also be shown that when ~1 ---) ~3 the components 
of the eigenvectors m (1) and m (3) approach one another (since they are represented by the same expres- 
sions, which depend on the roots ~1 and ~2, respectively). 

The result obtained can be formulated in the form of the following proposition: if ~1 ---> ~3, the ratio of 
the amplitudes of the two eigenveetors which comprise the Rayleigh wave approach -1 and m 0) --> m (3). 

Corollary. Under  the conditions of this assumption X1 re(l) + X3 m(3) ----> 0. 

3. M U L T I P L E  R O O T S  

We will now consider the case when the second of equations (2.2) has a multiple root. This is possible 
if its discriminant vanishes, which leads to the condition 

b2-4  ar  = 0 (3.1) 

The case of  a generalized Rayleigh wave corresponds to a negative value of discriminant (3.1), while 
the usual Rayleigh wave corresponds to the positive case [9]. 

Equation (3.1) can be written in the form of a biquadratic equation 

p2alc4 + pbl c2 + r = 0  (3.2) 

al = (Cw-C44) 2, bl = 2(C11 + C44)B, B = (C12 + 2C44--Cll)(C11 + C12) 

r,  - + 

from which one can obtain the value of the velocity or which the roots become multiple. If the discrimin- 
ant of Eq. (3.2) is positive and rl < 0, which is equivalent to the inequality 

C44 > (ClrCl2)/2 (3.3) 

a positive root of Eq. (3.2) exists which is expressed by the formula 

Ca (-(C" +C44)X+ 221C12 + C 4 4 1 ~ )  ~ 
= ( 3 . 4 )  

~ l c , , - c . .  I 

Hence, we can formulate the following propositions 
1. if Ca < c3, cn ~ Ca the  determinant of  the boundary conditions (2.6) vanishes when c ---> Ca; 
2. the wave corresponding to the phase velocity for which a multiple root occurs does not exist, since 

the partial waves we have Xlm(1)F(~I) -I- X3m(a)F(~3) ---> 0 as c ---> C a.  

The latter follows from the corollary to the proposition derived at the end of Section 2. 

4. R E S U L T S  OF C A L C U L A T I O N S  

The Rayleigh functions for some cubic crystals. We will consider crystalline aluminium as an example. 
We will take the following values as the moduli of  elasticity: Cll = 0.10730 × 1012 N/m 2, C12 = 0.609 x 
1011 N/m 2 and p = 2.6996 x 109 kg/m 3. 

In Fig. 1 we show a graph of  the Rayleigh function (RF) (this is what we will call the modulus of the 
determinant of boundary conditions (2.6) below) as a function of the phase velocity. It can be seen that 
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the Rayleigh function tends to zero for two values of the velocity: cR = 2941 m/s (this is also the velocity 
of the surface wave) and Ca = 3219 m/s. The first value of the velocity agrees with the well-known result 
[14]. The second corresponds to the occurrence of multiple roots. Note that the velocity of the transverse 
wave for aluminium is 3238 m/s. 

In Fig. 2 we show a graph of the Rayleigh function against the phase velocity c in the region of the 
limiting value, corresponding to the velocity of propagation of a transverse wave for a diamond crystal. 
We took the following characteristics of the material [14]: Cll = 0.10760 x 1013 N/m 2, Cz2 = 0.12500 x 

9 3 1012 N/m 2, C44 = 0.57535 x 1012 N/m 2 and p --- 3.5095 x 10 kg/m. It can be seen that, in this case also, 
there are two values of c for which the Rayleigh function vanishes. These values are 10,973 rn/s and 
12,780 m/s. The velocity of the transverse wave is 12,804 m/s. 

To compare the results with those obtained in [14] we also investigated a whole series of other crystals. 
However, this behaviour of the Rayleigh function was only found in the two materials mentioned. This 
is due to the fact that these materials are slightly anisotropie and the velocity for which the roots become 
multiple is less than the velocity of propagation of transverse waves in this direction. These results were 
not mentioned in [14], which is apparently due to the insufficient accuracy of the numerical algorithm 
employed. 

The Rayleigh function of model materials. We will investigate the case when the velocity of a Rayleigh 
wave cn is identical with the velocity ca for which multiple roots are formed. To do this we substitute 
(3.4) into (2.9). The equation obtained is satisfied for certain relations between the other moduli Cll, 
Cz2 and C44. This relation is shown in Fig. 3 by the continuous line in the form of a graph of Can against 
C12 when Cll = 1. For comparison we show the values of C44 for which the elastic medium becomes 
isotropic (the dashed curve). It can be seen that the range of moduli of elasticity for which a Rayleigh 
wave is forbidden corresponds to slightly isotropic crystals. 

The results obtained can be presented as follows: a Rayleigh surface wave cannot propagate when 
the vectors of its wave components become antiparallel; the necessary condition for this is that the 
velocity of the Rayleigh wave should be identical with the velocity for which the roots of the characteristic 
polynomial become multiple. 
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